remnants

granularity,

agility,

redundancy,

stability,

homeostasis,

Richard Dawkins , The Blind Watchmaker, 1986.

Chapter 5 – The power and the archives

It is raining DNA outside. On the bank of the Oxford canal at the bottom of my garden is a large willow tree, and it is pumping downy seeds into the air. … The whole performance, cotton wool, catkins, tree and all, is in aid of one thing and one thing only, the spreading of DNA around the countryside. Not just any DNA, but DNA whose coded characters spell out specific instructions for building willow trees that will shed a new generation of downy seeds. Those fluffy specks are, literally, spreading instructions for making themselves. They are there because their ancestors succeeded in doing the same. It is raining instructions out there; it’s raining programs; it’s raining tree-growing, fluff-spreading, algorithms. That is not a metaphor, it is the plain truth. It couldn’t be any plainer if it were raining floppy discs.

If you want to understand life, don’t think about vibrant, throbbing gels and oozes, think about information technology.

The particular polymers used by living cells are called polynucleotides. There are two main families of polynucleotides in living cells, called DNA and RNA for short. Both are chains of small molecules called nucleotides. Both DNA and RNA are heterogeneous chains, with four different kinds of nucleotides. This, of course, is where the opportunity for information storage lies. Instead of just the two states 1 and 0, the information technology of living cells uses four states, which we may conventionally represent as A, T, C and G. There is very little difference, in principle, between a two-state binary information technology like ours, and a four-state information technology like that of the living cell.

Concluding remark in the paper by Watson and Crick announcing their discovery of the structure of DNA.
It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.
 
In J.D. Watson and F.H.C. Crick, ‘A Structure for Deoxyribose Nucleic Acid,’ Letter in Nature (25 Apr 1953), 171, 738. Quoted in Francis Crick, What Mad Pursuit (1990), 66.
The quantum physicist, more famous for his cat thought experiment, gave 3 lectures in Dublin in 1943 which perhaps set everything in motion.
Every complete set of chromosomes contains the full code; so there are, as a rule, two copies of the latter in the fertilized egg cell, which forms the earliest stage of the future individual. In calling the structure of the chromosome fibres a code-script we mean that the all-penetrating mind, once conceived by Laplace, to which every causal connection lay immediately open, could tell from their structure whether the egg would develop, under suitable conditions, into a black cock or into a speckled hen, into a fly or a maize plant, a rhododendron, a beetle, a mouse or a woman. To which we may add, that the appearances of the egg cells are very often remarkably similar; and even when they are not, as in the case of the comparatively gigantic eggs of birds and reptiles, the difference is not so much in the relevant structures as in the nutritive material which in these cases is added for obvious reasons.
But the term code-script is, of course, too narrow. The chromosome structures are at the same time instrumental in bringing about the development they foreshadow. They are law-code and executive power?or, to use another simile, they are architect’s plan and builder’s craft-in one.
— Erwin Schrödinger
What is Life? (1944), 21-2.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s